Approximate solutions of the hyperbolic Kepler equation
نویسندگان
چکیده
منابع مشابه
On Approximate Solutions of the Generalized Radical Cubic Functional Equation in Quasi-$beta$-Banach Spaces
In this paper, we prove the generalized Hyers-Ulam-Rassias stability of the generalized radical cubic functional equation[ fleft( sqrt[3]{ax^3 + by^3}right)=af(x) + bf(y),] where $a,b in mathbb{R}_+$ are fixed positive real numbers, by using direct method in quasi-$beta$-Banach spaces. Moreover, we use subadditive functions to investigate stability of the generaliz...
متن کاملApproximate Solutions for the Couette Viscometry Equation
The recovery of flow curves for non-Newtonian fluids from Couette rheometry measurements involves the solution of a quite simple first kind Volterra integral equation with a discontinuous kernel for which the solution, as a summation of an infinite series, has been known since 1953. Various methods, including an Euler–Maclaurin sum formula, have been proposed for the estimation of the value of ...
متن کاملAsymptotic Behavior of Solutions to the Damped Nonlinear Hyperbolic Equation
(x 1 , . . . , x n ) ∈ Rn and t > 0, k 1 > 0 and k 2 > 0 are constants. The nonlinear termf(u) = O(u1+θ) and θ is a positive integer. Equation (1) is a model in variational form for the neoHookean elastomer rod and describes the motion of a neoHookean elastomer rod with internal damping; for more detailed physical background, we refer to [1]. In [1], the authors have studied a general class of ...
متن کاملLocal error analysis for approximate solutions of hyperbolic conservation laws
We consider approximate solutions to nonlinear hyperbolic conservation laws. If the exact solution is unavailable, the truncation error may be the only quantitative measure for the quality of the approximation. We propose a new way of estimating the local truncation error, through the use of localized test-functions. In the convex scalar case, they can be converted into L∞loc estimates, followi...
متن کاملNew Approximate Analytical Solutions of the Falkner-Skan Equation
We propose an iterative method for solving the Falkner-Skan equation. The method provides approximate analytical solutions which consist of coefficients of the previous iterate solution. By some examples, we show that the presented method with a small number of iterations is competitive with the existing method such as Adomian decomposition method. Furthermore, to improve the accuracy of the pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Celestial Mechanics and Dynamical Astronomy
سال: 2015
ISSN: 0923-2958,1572-9478
DOI: 10.1007/s10569-015-9645-0